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1 The Snake Lemma

1.1 Statement and proof of the snake lemma

Example 1.1. Consider the following commutative diagram with exact rows:

0 0 0

0 ker f ker g kerh

0 Z Z Z/2Z 0

0 Z Z Z/2Z 0

coker f coker g cokerh 0

0 0 0

×2

×2f ×2g ×2h

×2

×2

The map ker g → kerh is not surjective, and coker f → coker g is not injective. The snake
lemma says that these are the same problem.

Lemma 1.1 (Snake). Suppose we have the following commutative diagram with exact rows:

A0 B0 C0 0

0 A1 B1 C1

f g h
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Then there is a map kerh→ coker f that makes the “snake sequence”

ker f → ker g → kerh→ coker f → coker g → cokerh

exact. This yields the commutative diagram1

ker f ker g kerh

A0 B0 C0 0

0 A1 B1 C1

coker f coker g cokerh

f g h

Proof. We first construct the snake homomorphism by zigzaging through the diagram.
Take c ∈ kerh; then c ∈ C, so since B0 → C0 is surjective, we can lift c to an element
b ∈ B0. Then we can map b to b′ ∈ B1. Since c was in kerh and the diagram is commutative,
B1 → C1 sends b′ to 0. So b′ ∈ ker(B1 → C1) = im(A1 → B1), and we can lift b′ to a′ ∈ A1.
Note that a′ is unique (given b) because A1 → B1 is injective. Finally, let a′′ be the image
of a′ under the map (A1 → coker f). So we map c 7→ a′′.

Is this well-defined? We have a choice of possibly different b. Suppose we picked some
b0 instead of b, and let a′1 be the corresponding element of A1 we get. Note that B0 → C0

sends b− b0 to 0, so there exists some a ∈ A0 such that A0 → B0 maps a to b− b0. Since
the diagram is commutative, the map A1 → B1 should send f(a) to g(b− b0). Then since
f is injective and A1 → B1 sends a′− a′0 to g(b− b0), we have that a′− a′0 = f(a); then we
have a′ − a′0 ∈ im(f), so a′ and a′0 have the same image in coker f = A1/ im f .

We claim that the snake sequence is exact. The hard part is exactness at kerh and
coker f . Suppose we want to prove exactness at coker f . Suppose a′′ ∈ coker f and is
in the kernel of the map coker f → coker g. Lift it to a′ ∈ A1, and let b′ ∈ B1 be the
image of a′. b′ maps to 0 in coker g by the definition of a′′ (and because the diagram
commutes), so lift it to b ∈ B0. Map b to c ∈ C0. Now note that h(c) = 0 because
g(b) = b′ ∈ im(A1 → B1) = ker(B1 → C1). So c ∈ ker f , and the snake homomorphism

1The code for this diagram was modified from an answer on this StackExchange post.

2

https://tex.stackexchange.com/questions/3892/how-do-you-draw-the-snake-arrow-for-the-connecting-homomorphism-in-the-snake-l


takes c to a′′, so the sequence is exact at coker f . The similar proof for kerh is left as an
exercise.

1.2 Applications of the snake lemma

1.2.1 Exact sequences of tensor products of modules

Recall that if 0→ A→ B → C → 0 is exact, then so is

A⊗M → B ⊗M → C ⊗M → 0.

However, A ⊗ M → B ⊗ M is not always injective. What is the kernel? Choose free
modules Fi, Hi so that

0→ F1 → F0 → A→ 0, 0→ H1 → H0 → C → 0.

Extend this to the following diagram:

0 F1 F1 + H1 H1 0

0 F0 F0 + H0 H0 0

0 A B C 0

f g h

×2

Tensor every row with M and put in the kernels to get the diagram

0 0 0

0 ker f ker g kerh

0 F1 ⊗M (F1 ⊗M) + (H1 ⊗M) H1 ⊗M 0

0 F0 ⊗M (F0 ⊗M) + (H0 ⊗M) H0 ⊗M 0

A⊗M B ⊗M C ⊗M 0

0 0 0

f g h
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Note that the bottom row is the row of cokernels of the vertical maps f, g, h, so by the
snake lemma, we get an exact sequence

0→ ker f → ker g → kerh→ A⊗M → B ⊗M → C ⊗M → 0.

we can also call these

0→ Tor(A,M)→ Tor(B,M)→ Tor(C,M)→ A⊗M → B ⊗M → C ⊗M → 0.

Is Tor(A,M) well-defined? It seems to depend on the choice of 0→ F1 → F0 → A→ 0.
It is, in fact, well-defined.

Let’s calculate Tor(M,N) for finitely generated abelian groups M,N . First, we have
Tor(M1 ⊕M2, N) ∼= Tor(M1, N)⊕Tor(M2, N), so it is enough to do the case where M,N
are cyclic. If M = N = Z, take the resolution 0 → F1 → F0 → M → 0. If M = Z and
N = Z/nZ, we have

0 F1 F0 M 0

0 0 Z Z 0

0 0 Z/nZ Z/nZ 0

So Tor(Z,Z/nZ) = 0.
If m = Z/mZ and N = Z/nZ, we have

0 F1 F0 M 0

0 Z Z Z/mZ 0

0 Z/nZ Z/nZ · · · 0

×m

×m

Then Tor(Z/mZ,Z/nZ) = ker(Z/nZ ×m−−→ Z/nZ) = Z/(m,n)Z.
So Tor(M,N) depends only on the torsion subgroups of M,N . In fact, if M,N are

finite, M ⊗N ∼= Tor(M,N), although this isomorphism is not natrual.

Example 1.2. Here is a historical example from algebraic topology. This is where the
idea of Tor came from. The universal coefficient theorem states that

Hi(M,G) = (Hi(M,Z)⊗G)⊕ Tor(Hi−1(M,Z), G),

where Hi(M,G) is the homology of the manifold M with coefficients in G.
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Example 1.3. As a specific case of the previous example, let M = P 2 (2-dimensional
projective space). This is S2, where we identify opposite points. Suppose we know
H0(M,Z) = Z, H1(M,Z) = Z/2Z, and Hi(M,Z) = 0 for i > 1. Then

H0(M,Z/2Z) = H0(M,Z)⊗ Z/2Z = Z/2Z

H1(M,Z/2Z) = H1(M,Z)⊗ Z/2Z⊕ Tor(H0(M,Z),Z, 2Z)

H2(M,Z/2Z) = H2(M,Z)⊗ Z/2Z⊕ Tor(H1(M,Z),Z, 2Z),

which allows us to compute the homology2 H2(M,Z/2Z).

1.2.2 The Mitag-Leffler condition

Look at · · · → A3 → A2 → A1 → A0. Does the sequence of images stabilize? In other
words, does imAi = imAi+1 = · · · for some i?

Definition 1.1. Let · · · → A3 → A2 → A1 → A0. The Mitag-Leffler condition is that the
sequence of images stabilizes for all An; that is, for each n ∈ N, ther exists some i ≥ n such
that imAi = imAi+1 = · · · .

Example 1.4. The Mitag-Leffler condition holds if all Ai are finite.

Theorem 1.1. Suppose we have

...
...

...

0 Ai+1 Bi+1 Ci+1 0

0 Ai Bi Ci 0

...
...

...

If the Mitag-Leffler condition is satisfied, then

0→ limAi → limBi → limCi → 0.

2In the first edition of Lang’s book, there was an infamous exercise that said, “Take any book on
homological algebra, and prove all the theorems without looking at the proofs given in that book.” Professor
Borcherds seemed dismayed that the exercise was removed in a later edition of the book.
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Proof. We first do two easy cases:
1. Suppose all maps Ai+1 → Ai are onto (so ML condition is satisfied). We want to show

that limBi → limCi is onto. Pick some element of limCi, which looks like (c0, c1, . . . ) for
ci ∈ Ci, where ci is the image of ci+1. We can lift the ci to bi. Is bi the image of bi+1? Pick
b0 ∈ B0, and choose some b1 ∈ B1. Then im(b1)− b0 ∈ ker(B0 → C0) = im(A0 → B0), so
let a0 ∈ A0 be its preimage. Then we can lift a0 to a1 ∈ A1. Now replace b1 by b1 +im(a1).
Repeat this to find b2, b3, . . . . So bi maps to ci and bi−1.

2. Suppose for each i, we can find j so that Aj → Ai is 0 (this is the extreme opposite
condition to case 1). Then the ML condition holds. We want to show that limBi → limCi

iis onto. Pick Ai0 . Pick Ai1 so Ai1 → Ai0 is 0. Do the same over and over to get
→ Ai2 → Ai1 → Ai0 . Take the inverse limits over B0, Bi1 , Bi2 , etc.. So we can assume all
maps Ai+1 → Ai are 0. Pick (c0, c1, c2, . . . ), and pick bi mapping to ci. Is im(bi) = bi−1?
The image of im(b2) is im(b1) because im(b2)− b1 is in the image of A1, which is 0 in A0.
So the sequence im(b1), im(b2), im(b3), . . . is in limBi, and has image (c0, c1, c2, . . . ).

Now we combine the special cases 1 and 2. Suppose Ai satisfied the ML condition. Put
Xi =

⋂
j≥i im(Aj → Ai). So Xi ⊆ Ai, and we get exact sequences

0 Xi Ai Ai/Xi 0

0 Xi−1 Ai−1 Ai−1/Xi−1 0

where the down maps for the Xi are surjective. For each i, we can find j so that
im(Aj/Xi → Ai/Xi) = 0.

Use the snake lemma. Recall that 0→ A→ B → C → 0 is exact implies that

A⊗M → B ⊗M → C ⊗M → 0

is exact and

Tor(A,M)→ Tor(B,M)→ Tor(C,M)→ A⊗M → B ⊗M → C ⊗M → 0

is exact.
Copy this argument since the limit is left exact. We do this by flipping all the arrows.

We constructed Tor by taking 0 → G1 → F0 → A → 0; this works when F is free or
projective. So we can flip the arrows by replacing the projective modules by injective
modules 0 → A → I0 → I1 → 0; this uses our fact that every module is contained in an
injective module.

So the analogue of Tor is lim1(Ai). We get a sequence

0→ limAi → limBi → limCi → lim1Ai → lim1Bi → lim1Ci.

For this to be exact, we want lim1Ai = 0. The proofs above show that this is true if either
of the special cases hold. Now look at 0→ Xi → Ai → Ai/Xi → 0. We have

0→ limXi → limAi → limAi/Xi → lim1Xi → lim1Ai → lim1Ai/Xi → 0.

6



1.3 Unrelated: Finitely generated modules over a PID

Theorem 1.2. Any finitely generate modules over PID are sums of cyclic modules of the
form R/I.

Proof. We don’t have time in class to prove the whole theorem, so we will cheat and just
do the case of Euclidean domains. The proof is the same as the one we gave for Z. If
M is any submodule of Zn, we can find a basis b1, . . . , bn of Zn. So M is spanned by
d1b1, d2b2, . . . , dnbn for some di Then the finitely generated module Zn/m =

⊕
Z/diZ.
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